“端到端”在质疑声中纷纷落地,智驾头部玩家几乎都赶在了2024年末官宣了端到端的量产消息。同时直觉智驾、本能智驾、监督式智驾、交互式智驾等慢慢的变多的智驾新名词开始涌现,这些都是市场端在向监管端发出消息:L3放行已刻不容缓。
以城市领航辅助为代表的高阶智驾功能,从2023年的初现端倪,再到2024年的大规模落地,如今慢慢的变成了各大车企争夺高阶智驾话语权的焦点。
而高阶智驾发展到今天的L2+级别,想要再上一个台阶达到L3级甚至更高,原有技术在面对复杂多变的城市道路时就显得有一点吃力了。
目前,官方宣布已经落地端到端技术的车企慢慢的变多,全球层面的第一个是特斯拉,国内的第一个是小鹏。
今年3月,特斯拉推出了FSD系统的V12版本,该版本宣称删除了几十万行的人工规则代码,采用了端到端无人驾驶解决方案。
今年7月底,小鹏宣布向全球用户全量推送AI天玑系统XOS 5.2.0版本,该版本采用了国内首个量产端到端大模型,官方宣称其高阶智驾系统提升到了“全国都好用”的水平。
在8月开幕的2024成都车展上,极越宣布PPA智驾升级为百度ASD,采用“纯视觉+端到端大模型”的高阶智驾方案在极越07上实现首搭。
虽然更多的车企还没有实现量产落地,但也在紧锣密鼓地进行端到端技术的研发。蔚来在年中成立了大模型团队,小米也将智驾研发技术团队的感知与规控两个部门合二为一。
8月初,梅赛德斯-奔驰则在上海研发中心宣布,新新一代无人驾驶系统的“无图”L2++城市领航辅助慢慢的开始测试,并且应用了端到端大模型。
10月23日,理想汽车宣布新新一代双系统智能驾驶解决方案“端到端+VLM视觉语言模型”正式全量推送。
到10月28日,智己汽车宣布IM AD 3.0率先完成从“最像人”到“有直觉”的断代式进化,为智驾系统率先注入AI生成的“直觉”——基于智己汽车与Momenta联合打造的“一段式端到端直觉式智驾大模型”。
至此,智己正式加入端到端阵营,并成为国内第一个官宣落地“一段式端到端”的车企。
所谓的“端到端”,一端是传感器,包括摄像头、激光雷达等,它们就像眼睛一样承担输入环境信息的作用;另一端是行驶轨迹,也就是系统接收了来自传感器的信息后,会输出规划轨迹,从而控制车辆按照轨迹行驶。
以往,传统的智能驾驶系统采用的是模块化模型,将感知、预测、规划分别为三个独立的模型。每个模型的技术栈差异较大,处于下游的规划模型需要依赖工程师编写大量代码去制定行驶规则。在模块化的技术架构下,信息的传递会出现减损,系统的维护难度大,无法从容应对复杂路况。
端到端大模型则截然不同,将感知、预测、规划三个模型融为一体,无需程序员编写冗长的代码去制定规则,而是用海量数据去训练系统,赋予机器自主学习、思考和分析的能力。端到端模型不可能会出现信息传递减损,能够更好地处理复杂的驾驶任务。
这就是我们常说的系统具备了学习能力,可实现“边看边开”,从而拥有了应对复杂场景的能力。
按照智己官方的说法,IM AD 3.0能以更接近人脑结构的思考方式,生成本能反应主导的直觉决策能力,可以能像人类思维一样做出瞬间预判,具备“十年老司机”的直觉驾驶体感。
这个所谓的“直觉”,实际上的意思就是端到端技术的核心价值——打破传统架构中模块化方案的解决思路,不再依赖人工编写的规则,让感知信息能更无损地参与到每一次的路径规划,输出更加类人的驾驶策略。
因此,智己提到的这个“直觉”,其实也不算是新概念,而是对端到端技术最恰当的一种比喻。
据官方介绍,智己IM AD 3.0让智能汽车首次拥有了综合分析道路环境全局信息的能力,尤其在应对突发状况时,能够“脑补”出看不见、看不全的路况信息,像人类高级思维一样能做出瞬间预判,即人们通常所说的“直觉”或“下意识反应”。
在具体场景方面,智己在发布会上展示了测试视频,可见IM AD3.0能够礼让盲区横穿的行人、可以绕行水坑等特殊障碍物;在面对人车混流的无保护左转场景时,能够像老司机一样老练博弈,而不再原地傻等;在错综复杂的路口,即使面对无中线、超宽车等看不清的路况,也能流畅通行。
其实从端到端技术的落地时间来讲,智己并不算快,但此次官宣还有一个看点,那就是“一段式端到端”的落地,这让智己成为国内首个实现这一技术上车的车企。
当前,端到端大模型基本都采用分模块智驾结构,也是所谓的“两段式”架构,分别为感知的端到端和规控的端到端,二者各自独立。
为智己提供智驾方案的科技公司Momenta CEO曹旭东表示,在两段式端到端中,感知的端到端一定需要这个物体对于人来说是比较好定义的,这样的话才能够很好地搜集训练数据,以及学习和验证。但是对于复杂的通用障碍物,比较难在感知的端到端里面做定义的,规控的端到端就无法收到对应的输入,进而忽视掉重要的感知信息,做出一些误判的驾驶行为。
“一段式端到端大模型”则取消了分模块智驾结构,将感知与规划整合进一个大模型,通过数据飞轮提供的海量优质数据,训练一个完整的神经网络,分析全局信息、隐含信息,学习优秀的人类驾驶行为,从原始数据输入到规划路径输出,形成了类似人脑的高级思维“直觉”反应。
曹旭东表示,一段式端到端的好处是感知的端到端和规控的端到端联系在一起,哪怕未定义的物体出现,在感知大模型的帮助下,仍然会做出合理避让。
为了解决一段式端到端方案前期下限低的问题,Momenta的端到端模型采用了短期记忆和长期记忆的训练逻辑。其中,短期记忆的训练周期是以“天”为级别的,好的数据和好的方法得到验证之后再进入长期记忆的模型学习。
这是一个类似于人类大脑进行学习的逻辑,当一个新的数据进来,它会先进入短期记忆,等到数据和方法被验证之后,才会进入长期记忆去学习。
根据官方数据,这套智己与Momenta联合打造的“一段式端到端大模型”在“长短期记忆模式”架构的助力下,将模型训练成本节省了10-100倍,同时还大幅度的提高了迭代速度。
虽然官宣落地端到端的车企慢慢的变多,但无论是在研发端,还是在市场端,业内人士对端到端的观点及判断并不一致。
8月16日,在第四届沈阳智能网联汽车挑战赛上,同济大学汽车学院教授朱西产表示:“特斯拉的端到端、人工智能让无人驾驶更加成为可能,端到端被特斯拉带火了,国内的车企都在说端到端。但现在,谁宣布端到端量产上车了,他的这个车你就别买。”
而在此一周之前,华为终端董事长、智能汽车解决方案BU董事长余承东评价特斯拉FSD到:“其商用版本进步非常大,上限挺高,但下限也很低。我们去测试,路上停着静止不动的白色货车,不减速就直接撞过去了,还有绿色的货车,也是不减速就去撞。”
根据朱西产的解读,端到端大模型虽然可提供强大的泛化能力,但是在安全性方面存在不确定性。国内车企在数量和AI训练算力方面与特斯拉相比还有很大的差距,所以近两年端到端量产上车的可能性不大。因为大模型需要的高算力还很难在车端布置,并且大模型目前也很难解决“长尾难题”。
所谓“长尾难题”,就是指在无人驾驶过程中那些发生概率较低、但种类非常之多的特殊场景所带来的潜在风险。这样一些问题涵盖各种零碎、极端的情况和难以预测的人类行为,例如:带有凸出货物的卡车、打伞的行人、倒在路中央的树木,以及异形车辆、乱穿马路的行人和自行车、雨雪等极端天气、极暗的行车环境等。
他表示:“端到端很难一蹴而就,我不认为现在市场上有任何一家是端到端,绝对不可能的,这样一个世界上现在没有人是端到端,不要吹这个牛。特斯拉目前还是分段式的,真正端到端、完全视觉看到直接做执行还很难。要知道,这背后的验证模型是巨大的投入。”
夏一平所提到的巨大投入,就是端到端大模型量产的最大难点——它的完善需要巨额的训练数据积累,由此带来的人力、物力和财力的消耗也是非常可观的。
以特斯拉为例,仅仅建设超算中心就花费了40亿美金,而端到端大模型越完善,也将意味着参数越多、数据越多,其中还包括图片和视频数据。
在数据采集方面,目前车企纷纷依靠用户的车辆采集数据,销量越大也代表着数据越丰富。据业内人士预测,谁的销量先破100万辆,谁就非常有可能在智能驾驶采集数据方面率先取得突破,而特斯拉在美国市场已销售了170多万辆,它在数据积累上的体量是目前任何一个品牌都很难达到的。
朱西产认为,根据国内车企目前在智能驾驶开发的数据能力和AI训练算力,先做到感知的端到端,在规控算法上保留安全准则模型,这种分段式的端到端方案模型是是合理的的技术路线。
据极越官方表示,百度在AI和无人驾驶领域拥有超过十年时间、超过1500亿资金的持续投入,基于L4级无人驾驶大模型Apollo ADFM打造了ASD。Apollo的L4级自动驾驶里程已超越1亿公里,并建立了超5.5EFLOPS的高算力训练集群,能轻松实现模型的高效训练和快速迭代。
在这一点上,智己与Momenta宣布“模型训练成本节省了10-100倍,并大幅度的提高了迭代速度”其实与之意思相同,那就是强调数据训练效率提升,已经积累到了能支持端到端落地的量级。
随着端到端大模型的陆续落地,智能驾驶突破现有的L2级“限制”已经迫在眉睫了。
智己在宣布“一段式端到端直觉式智驾大模型”量产上车的时候,也同步官宣了“同时具备L2、L3、L4级智能驾驶量产能力”的消息。
按照官方公布的信息,智己的L2+级高阶辅助驾驶已在全国范围内开通全系车型“无图城市NOA”;欧洲市场的L2+道路测试也已启动;L3级无人驾驶已进入量产倒计时,智己在今年6月入选了全国首批“L3准入及路试联合体名单”,预计将于2026年正式具备L3级无人驾驶方案的量产条件;预计将在年内获得首批“L4级无驾驶人道路测试牌照”,实现无人驾驶车率先上路。
智己表示,在随着L3、L4级无人驾驶相关法律和法规的逐步出台,智己将最快落地全行业最领先的无人驾驶体验。
比智己更早一点官宣的是华为,余承东在2024世界智能网联汽车大会上表示,预计ADS 4.0将于2025年推出,将实现高速L3级无人驾驶商用及城区L3级无人驾驶试点。
而像小鹏、理想、蔚来、极越等具备了高阶智驾能力的品牌,其实也已经具备了突破L2级的技术积累,他们的智驾系统在功能上距离允许“脱手”也只差法规的松绑而已了。
在6月15日举办的中国汽车蓝皮书论坛上,华为智能汽车解决方案BU CEO靳玉志表示,汽车智能驾驶已经在L2级停留了太长时间,L3级无人驾驶技术在高速等场景的应用已经较为成熟,应该尽快允许商用。
虽然法规究竟何时可以“解绑”尚未可知,但端到端技术的逐步落地和持续完善无疑将起到助推作用。
对于L3的放行,智驾网曾多次表示,可以分步实现,沿承从代客泊车、高速NOA、再到城市封闭道路NOA,最终到完成城市NOA的一个逐步放开的顺序。
而对于所谓历史性的事故责任主体从驾驶者向车企的转换,应遵循经济救济原则,引入代客泊车险、高速NOA险种等措施,用经济的方式解决责任主体的风险问题。
今年随着端到端的落地,直觉智驾、本能智驾、监督式智驾这新些的智驾名词,事实上都是强调高阶智驾来到一个新的阶段,而对于消费者而言,就是特定场景下,车辆已能轻松实现比人类驾驶员更好的表现。
介绍: 科技视角、极客精神,智驾传媒是拥有智能汽车网(、《AutoR智驾》、微信平台(zhinengqiche)和智能汽车展会的全媒体平台。R是Robot一词的缩写,AutoR意指智能汽车。
1本年度报告摘要来自年度报告全文,为全方面了解本公司的经营成果、财务情况及未来发展规划,投资者应...
由励展博览携手中国贸易促进委员会电子信息行业分会主办的“S-FACTORY EXPO 智能工厂及...
正业科技(300410)12月20日在出资者联络平台上答复了出资者关怀的问题。 正业科...
电子发烧友网于2006年10月成立, 是一个以电子技术知识为核心,以工程师为主导的平台。致立于为...
证券之星音讯,依据企查查多个方面数据显现新华医疗(600587)新取得一项实用新型专利授权,专利...
1、按下电源开关,仪器进行内部自检和预热,显示从200到0的倒计时,历时20秒。 2、...
在水质环境中咱们都知道水污染是一件很重的情况,水质维护也是很重要的,cod含量、氨氮含量、总磷总...
近来,高台县兴农牧业科技有限责任公司展开员工全自动包装机接料操作技术比赛,此次比赛旨在全面提高公...
...